
Received: 15 December 2020 Revised: 30 July 2021 Accepted: 1 September 2021

DOI: 10.1002/cpe.6616

S P E C I A L I S S U E P A P E R

The HighPerMeshes framework for numerical algorithms on
unstructured grids

Samer Alhaddad1 Jens Förstner1 Stefan Groth2 Daniel Grünewald3

Yevgen Grynko1 Frank Hannig2 Tobias Kenter1 Franz-Josef Pfreundt3

Christian Plessl1 Merlind Schotte4 Thomas Steinke4 Jürgen Teich2

Martin Weiser4 Florian Wende4

1Paderborn Center for Parallel Computing and

Department of Computer Science and

Department of Electrical Engineering,

Paderborn University, Paderborn, Germany

2Hardware/Software Co-Design, Department

of Computer Science, Friedrich-Alexander

University Erlangen-Nürnberg (FAU), Erlangen,

Germany

3Fraunhofer Institut für Techno- und

Wirtschaftsmathematik, Kaiserslautern,

Germany

4Zuse Institute, Berlin, Germany

Correspondence

Stefan Groth, Chair of Computer Science 12,

Cauerstr. 11, 91058 Erlangen, Germany.

Email: stefan.groth@fau.de

Summary

Solving partial differential equations (PDEs) on unstructured grids is a cornerstone

of engineering and scientific computing. Heterogeneous parallel platforms, includ-

ing CPUs, GPUs, and FPGAs, enable energy-efficient and computationally demand-

ing simulations. In this article, we introduce the HighPerMeshes C++-embedded

domain-specific language (DSL) that bridges the abstraction gap between the mathe-

matical formulation of mesh-based algorithms for PDE problems on the one hand and

an increasing number of heterogeneous platforms with their different programming

models on the other hand. Thus, the HighPerMeshes DSL aims at higher productiv-

ity in the code development process for multiple target platforms. We introduce the

concepts as well as the basic structure of the HighPerMeshes DSL, and demonstrate

its usage with three examples. The mapping of the abstract algorithmic description

onto parallel hardware, including distributed memory compute clusters, is presented.

A code generator and a matching back end allow the acceleration of HighPerMeshes

code with GPUs. Finally, the achievable performance and scalability are demonstrated

for different example problems.
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1 INTRODUCTION

Simulations of physical systems described by Partial Differential Equations (PDEs) are the cornerstone of computational science and engineering.

The ever-increasing number and scale of simulations have led to the rise of different and heterogeneous parallel computing platforms, rang-

ing from multicore CPUs to parallel distributed systems to GPUs and FPGAs. Adapting and implementing complex simulation algorithms on

these different architectures is a demanding task requiring in-depth computer science knowledge. Consequently, many large-scale simulation

codes address only a narrow and often traditional range of computing environments, missing the performance opportunities offered by new

architectures.

In this article, we present the HighPerMeshes embedded Domain-Specific Language (DSL) providing the right abstraction layer toC++ applica-

tion developers to implement efficient mesh-based algorithms for PDE problems on unstructured grids. The focus of the DSL is on finite element
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(FE) and discontinuous Galerkin (DG) or finite volume (FV) discretizations to address iterative and matrix-free solvers as well as time stepping

schemes. Large parts of PDE simulation problems thus can be covered. HighPerMeshes draws heavily on the C++17 standard and template

metaprogramming for genericity and extensibility. Additionally, compile-time information through template parameters can benefit the code gen-

eration for specific target architectures. Furthermore, we address the acceleration of HighPerMeshes with GPUs. To stay as general as possible,

we use OpenCL*as a back end, which allows targeting various GPUs and other heterogeneous architectures such as FPGAs. For this purpose,

we provide a code generator that produces the necessary OpenCL code from HighPerMeshes code and a back end that allows executing the

generated code.

2 THE HIGHPERMESHES DOMAIN-SPECIFIC LANGUAGE

Picking the right abstraction level is central for every DSL or library interface targeting mesh-based algorithms for PDEs. On the one hand, it needs

to provide idioms for specifying the algorithmic building blocks on an abstraction level that allows an efficient mapping to different computing

platforms. On the other hand, it should be detailed enough to allow implementing a wide range of established or yet to be developed discretiza-

tion schemes and numerical algorithms. The HighPerMeshes DSL aims at providing abstractions on a level that is just high enough to allow for

an efficient mapping to sequential and multithreaded CPU execution, distributed memory systems, and accelerators. On this level, the core com-

ponents of mesh-based PDE algorithms include mesh data structures, the association of Degrees of Freedom (DoFs) to mesh entities such as

cells and vertices, and the definition of kernel functions that encapsulate local computations with shape functions defined on single mesh cells

or faces.

2.1 Mesh interface

Computational meshes decompose the computational domain Ω ⊂ R
d into simple shapes such as triangles or tetrahedra by which PDE solu-

tions can be represented. Unstructured meshes do so in an irregular pattern that can be adapted to complex geometries or local solution

features in a flexible way. Unlike structured meshes, neighborhood relations between these cells are not implied by the storage arrange-

ment of their constituting vertices, but are usually defined through connectivity lists that specify these neighborhoods. Therefore, the storage

efficiency of unstructured meshes can be very low if the specifics of the hardware architecture are not taken into account. Similarly, when

accessing or iterating over mesh entities (cells, faces, edges, and vertices for d = 3), the memory structuring and arrangement of, for example,

geometrically neighboring entities can be critical to performance and present optimization targets on the mesh implementation for different

architectures.

The construction of a mesh in the HighPerMeshes DSL starts from a set of vertices V = {vm ∈ R
d} and a set C = {in| n = 0, … ,#cells − 1} of

connectivity lists in ⊂ {0, … , |V| − 1} representing the cells in the mesh. Users can create meshes by providing V and Cdirectly or by using one of

the available import parsers for common mesh data files. Each i ∈ C references into the vertex set V to encode an entity of the cell dimensionality

dcell ≤ d. Subentities or constituting entities like edges and faces correspond to index sets j ⊂ i ∈ C that are deduced according to a particular scheme

that is specific to the entity type. All entities are stored in a (dcell + 1)-dimensional set data-structure using their index sets. In this way, the duplication

of subentities is avoided, and each entity can be assigned a unique identifier (ID) so that finding a specific one through its vertices can happen in

logarithmic time complexity. In addition, our mesh implementation manages a lookup table which for each entity holds the IDs of all its constituting

entities with one dimension lower, and another one with the IDs of all incident super-entities, if present.

2.2 Buffer types for storing coefficient vectors

PDE solutions are generally discretized using finite-dimensional ansatz spaces and are represented by coefficient vectors with respect to a cer-

tain basis. In FE, FV, and DG methods, the basis functions are associated with mesh entities and have a support contained in the union of the

cells incident to their entity. The mapping of coefficients, or DoFs , to storage locations and access to them depends on the target architecture

and may involve nontrivial communication. Therefore, the DSL provides buffer types for coefficient vector storage to relieve the user from these

considerations.

Depending on the ansatz space, a particular number of basis functions is associated with mesh entities of different dimensions. Therefore, the

number of coefficients 𝜂d̃ associated with entities of dimension d̃ ∈ {0, … , dcell} has to be specified when constructing a buffer. Additionally, global

values as coefficients of the constant basis function can be stored, for example,

* https://www.khronos.org/opencl/.

https://www.khronos.org/opencl/
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for dcell = d = 3. The buffer holds one value of typefloat for each node, edge, face, and the cell itself. Two additional entries are provided for global

values.

DoFs are accessed through a “local-view object” (local_view in Listing 1, line 8) inside kernel functions. These local views are a tuple of

implementation-specific objects, that are accessible with theGetDof function, that requests DoFs of a certain dimension. This is necessary because

access patterns may provide DoFs associated with mesh entities of different dimensions. Given a data access pattern (Section 2.3) and a specific

entity—typical program executions loop over all or a subset of the entities in the mesh, one after the other—the corresponding local view makes for

a linearly indexable type inside the kernel function, thereby hiding data layout and storage internals.

2.3 Iterating over the mesh with local kernels

In the PDE solver algorithms that we target, a significant part of PDE computation on meshes involves the evaluation of values, derivatives, or

integrals on cells or faces, and is therefore local. This allows for various kinds of parallelization, depending on the target architecture. Typically,

these local calculations in space are embedded into time stepping loops or iterative algorithms, which imply dependencies based on the data access

patterns of the kernels. With a scheduler that suitably resolves these dependencies, additional parallelism can be exploited by partially overlapping

subsequent time steps.

In HighPerMeshes, the application developer specifies the calculations as local kernels at entity granularity and invokes a dispatcher to take care

of their parallel execution and scheduling. Line 1 of Listing 1 shows the definition of a distributed dispatcher that uses the command line arguments

to set up its environment. The advantage of using this dispatcher model is a complete separation of parallelization techniques and kernel definitions.

The interface is technology-agnostic, and the user does not need to know the intricate details of parallel and distributed programming.

The dispatcher’s Execute method takes a number of kernels to be executed as its arguments. If required, those arguments might be supple-

mented by a range of time steps as shown in line 4 of Listing 1 in order to iterate the defined sequence of kernels more than once in the specified

range. Each kernel must define a range of entities to iterate over. To enable flexible parallelization strategies, the DSL does not guarantee a process-

ing order for these entities. For example, the function call mesh.GetEntityRange<CellDimension>() in line 6 specifies that the dispatcher

iterates over all cells. ForEachEntity in line 5 defines an iteration over all entities in that range. Here, HighPerMeshes provides another option:

ForEachIncidence<D> iterates over all subentities of a certain dimension D for the entities in the given range.

The kernel requires a tuple of access definitions, as seen in line 7. Access definitions specify the mode (any of Read, Write, and ReadWrite)

and the access pattern for the DoF access. This allows the scheduler to calculate dependencies between kernels, thereby avoiding conflicting

DoF accesses in scatter operations despite parallelization. Access patterns determine the DoFs relevant for the calculation by specifying a set of

mesh entities incident or adjacent to the local entity.Cell in line 7 means that the kernel requires access to the DoFs from the givenbuffer that are

associated with the local cell, as frequently used in DG methods. Other common access patterns involve a local cell and all of its incident subentities,

usually encountered in FE methods, or the two cells incident to a face for flux computations in DG or FV methods. While HighPerMeshes aims at

providing all access patterns necessary for common kernel descriptions in FE or DG methods, they can be easily extended by providing the required

neighborhood relationship in the mesh interface.

The last argument is a user-defined lambda, that is, an anonymous function (line 8). This lambda defines what is actually computed for each

entity in the given rage and must be callable with the specified entities, time steps, and a local-view objectlocal_view as its arguments. The latter

allows access to the requested DoFs.

Listing 1: Example of a dispatcher definition and kernel execution

3 USING THE DSL

In this section, examples and code segments are presented to illustrate the methods described in Section 2 and to explain their use. The examples

are elliptic and parabolic differential equations that were numerically solved using the DSL. The grids are mainly irregular 3D simplex meshes, but



4 of 15 ALHADDAD ET AL.

TA B L E 1 Overview of usage examples

Section Problem/Method Local kernels Solvers

3.1 Poisson, FE method Matrix-free and rhs assembly CG method, iterative

3.2 Maxwell’s eqs., DG method Rhs assembly, multiple kernels RK time stepping

3.3 Monodomain, FE method Solver assembly Euler time stepping

F I G U R E 1 Code segment for right-hand side computation

regular 2D simplex meshes are also used. Further information about the algorithms and examples can be found in the public repositories†. Table 1

summarizes the features of the presented examples.

3.1 Matrix-free solver for the Poisson equation

For illustrating the usage of the DSL, the elliptic Poisson problem

−Δu = f in Ω ⊂ R
3, u = 0 on Γ ⊂ R

3 (1)

with homogeneous Dirichlet boundary conditions is solved by a matrix-free conjugate gradient (CG) method.1,2 By discretizing (1) with linear finite

elements on a tetrahedralization of Ω, that is, with one DoF per vertex, a system Ax = b of linear equations is obtained.3 Since A is symmetric and

positive definite, its solution is the minimizer of the convex minimization problem F(x) = 1

2
xT Ax − bT x → min.

In order to solve this linear system of equations, the right-hand side (rhs) b must be assembled. This is done using the buffer datatype and the

loop ForEachEntity, which iterates over the vertices of each cell (in this case tetrahedra) and stores the corresponding value in the buffer (Figure 1

code line 8).

The homogeneous Dirichlet boundary conditions can be built into the rhs here as well. To solve the system, a matrix-free CG iteration is used. Its

main algorithmic building block is the computation of matrix–vector products Ax. Instead of assembling A and performing linear algebra operations,

we assemble the product s = Ax directly by evaluating

sj =
∑

j
∫C

∇𝜙i∇𝜙jdC

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
(Aloc)i,j

⋅ xj (2)

†https://github.com/HighPerMeshes/highpermeshes-dsl/examples, https://github.com/HighPerMeshes/highpermeshes-drts-gaspi/examples.

https://github.com/HighPerMeshes/highpermeshes-dsl/examples
https://github.com/HighPerMeshes/highpermeshes-drts-gaspi/examples
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per cell and with𝜙∗ as shape functions (see line 5 of Listing 2). To show that the DSL provides a compact syntax, we provide a sketch of an equivalent

Matlab implementation in Listing 3 for comparison. Note that the functions vertexIndicesByCell and localStiffnessMatrix have to be

implemented by the user, adding additional programming effort to the Matlab code. We would like to stress that the code, except for some syntax

overhead, is very close to the underlying mathematical concepts and completely independent of the target architecture, allowing users without any

knowledge of parallel or distributed computing to concentrate on its mathematical structure. Finally, the result can be saved into a file and visualized

using, for example, ParaView.4

Listing 2: Example of a matrix-free rhs assembly

Listing 3: Equivalent Matlab sketch of a matrix-free rhs assembly

3.2 Discontinuous Galerkin time domain (DGTD) Maxwell solver

In the following, we sketch an implementation of a Maxwell solver based on the DGTD numerical scheme.5,6 An initial value problem is solved

in the time domain in a free space mesh with perfect electric conductor (PEC) boundary conditions. The user can modify the code accordingly if

field sources, materials, or absorbing boundaries are needed. The simulation domain is discretized in a triangular or tetrahedral mesh, which is

used as an input. Then, DoFs or calculation points are created within the cells, depending on the ansatz order specified by the user. For example,

a three-dimensional simulation with third-order accuracy requires 20 DoFs in each cell to represent the unknown fields. The right-hand sides of

Maxwell’s equations are evaluated during Runge–Kutta time integration at each time step according to the DGTD method formulation

Ė =  × H + ()−1 (ΔE − n̂ ⋅ (n̂ ⋅ ΔE) + n̂ × ΔH), (3)

Ḣ = − × E + ()−1 (ΔH − n̂ ⋅ (n̂ ⋅ ΔH) + n̂ × ΔE). (4)

Here  × H and  × E are the curls of the magnetic and electric fields, correspondingly,  is the mass matrix,  the face matrix, ΔE,ΔH are

field differences between the neighboring cells at the interfaces and n̂ the face normal.6 The first term (the curls) involves only cell-local DoFs and

is therefore called “volume kernel” (see Listing 4).

Listing 4: Code segment for the Maxwell volume kernel
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(A) (B) (C) (D)

F I G U R E 2 The electric field component Ey in the simulation domain. Three parts of the partitioned results can be seen in (A), (B), and (C),
while (D) shows the merged result of all four processes

The second term in (3,4), the “surface kernel” (see Listing 5), stems from a surface integral over the cell’s faces. It involves those DoFs from

within the two incident cells located on these faces. Calculating the surface kernel requires some operations provided directly by the DSL like (Get-

Normal(), GetAbsJacobianDeterminant(), … ). The implementation complexity of DG on unstructured meshes comes from the access or

mapping to the neighboring cells DoFs in order to calculate fluxes across faces as described in (3) and (4). This access is performed with the data

structure NeighboringNodeMap (line 15 in Listing 5), which provides the corresponding index for the DoFs in the local view.

In HighPerMeshes, the calculated field components in the DoFs can be written completely or selectively to an output file for each time

step. The writeLoop method comfortably provides this functionality with its specific user defined iteration ranges. Figure 2 shows a visualiza-

tion of the electric field component Ey in the partitioned simulation domain. For this, the calculated filed values in the unstructured DoFs are

transformed to arrange them in a structured grid with definable resolution. The simulation domain is a cavity box represented by an unstruc-

tured grid discretized spatially into 1585 tetrahedra with PEC (perfect electric conductor) boundary and initial value conditions. The simula-

tion runs on four processes, showing that HighPerMeshes can output results in the distributed case that can be easily merged to be viewed

with ParaView.

Listing 5: Code segment for the Maxwell surface kernel

3.3 Finite elements for cardiac electrophysiology

The excitation of cardiac muscle tissue is described by electrophysiology models such as the monodomain model

u̇ = ∇ ⋅ (𝜎∇u) + Iion(u,w),
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ẇ = f(u,w), (5)

where 𝜎 is the conductivity, Iion is the ion current that forms together with the gating dynamics f(u,w) the membrane model. The simplest

FitzHugh–Nagumo membrane model defines Iion(u,w) = u(1 − u)(u − a) − w and f(u,w) = 𝜀(u − bw) with 0 < a, b, 𝜀 < 1.7-9

The method of lines10 discretizes the monodomain model (5) first in space and then in time. For the discretization of space, we use linear finite

elements again, leading to the system

Mu̇ = 𝜎Au + M ⋅ Iion(u,w),

ẇ = f(u,w)

with mass matrix M and stiffness matrix A. For time discretization, the forward Euler method

ut+1 = ut + 𝜏(M−1𝜎Aut + Iion(ut,wt))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

u̇∶=ud

, wt+1 = wt + 𝜏f(ut,wt) (6)

is widely used in cardiac electrophysiology due to its simplicity and its stability for reasonable step sizes 𝜏 .11

In order to avoid inverting the globally coupled mass matrix, the row-sum mass lumping technique is applied to M.12 This yields a diagonal

approximation Ml of M and allows for efficient, explicit formation of M−1
l

to be used in (6) instead of M−1, and matrix-free storage in vector form. The

right-hand side ut including the matrix–vector product Aut is assembled directly as in (2) without forming A:

Listing 6: Code example of an implementation of a first order solver (forward Euler).

4 MAPPING TO PARALLEL SHARED- AND DISTRIBUTED MEMORY SYSTEMS

In the previous two sections, we introduced the HighPerMeshes DSL from a usage perspective, highlighting in Section 2.3 how a user can imple-

ment device- and parallelization-agnostic local kernels. When targeting multi-CPU architectures, the kernels get compiled along with parts of the

HighPerMeshes infrastructure, which under the hood allows for parallel execution with a library and runtime system.

HighPerMeshes provides a distributed dispatcher that builds upon the Global Address Space Programming Interface (GASPI)13 for scaling over

multiple nodes. The latter further uses ACE14 to accelerate the algorithms by either feeding tasks to ACE’s thread pool or by parallelizing the work

defined by a task with OpenMP‡. For an in-depth explanation of this dispatcher, we refer to.15,16

For the distribution of data and computation to multiple compute nodes and processors, HighPerMeshes manages a hierarchy of global and

local mesh partitions. For mesh partitioning, we use the Metis library.17 Global partitions assign mesh entities to distinct compute nodes, while local

partitions can add an additional layer for further work segmentation on each compute node. Each local partition belongs to a unique global partition

that determines the actual compute node to which the associated mesh entities belong. Global partitions also store the DoFs corresponding to their

owned mesh entities.

To achieve parallelization, we define tasks such that each task applies a kernel given by one loop to each entity in a local partition. The execution

of these tasks can then be parallelized. However, the task still requires and produces specific data that other tasks might also access. This data may

also be on another physical compute node, thus requiring communication.

The distributed dispatcher creates a dependency graph for all kernels to enforce correct behavior and constructs a dependency between two

kernels if they access the same DoFs. For each of these dependencies, the dispatcher calculates the exact intersection of required buffer indices with

the help of the specified access pattern. Suppose these index intersections lie on a different global partition. In that case, HighPerMeshes defines a

precondition for the receiving task to wait for the data and defines a postcondition for the producing task to send the data to the correct process.

Figure 3 shows an example for two kernels accessing the same buffer, one writing and one reading. In HighPerMeshes, this can be expressed

as dispatcher.Execute(Writer, Reader). Here, the ranges to be iterated over are already abstracted as the tasks wi and ri with 0 ≤ i ≤ 7.

‡https://www.openmp.org/.

https://www.openmp.org/
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F I G U R E 3 Example data accesses for a sending and receiving solver step. The tasks are already assigned to two global partitions (rounded
boxes) that are separated into four local partitions (circles)

In this example, the dispatcher must schedule r2 after w1, w2, and w5, because the writers produce data that the reader requires. Furthermore,

because r2 and w5 are on different global partitions, that is, their data lies on physically distinct compute nodes, communication is required. The

dispatcher can use the calculated intersection of DoFs to define a process that sends data from w5 to r2 when w5 is finished.

Here, HighPerMeshes’ access patterns, as described in Section 2.3, show their advantage. A dispatcher implementation can use this abstract

data access specification during compile time in order to construct the required procedures to communicate data, transparent to the end user. This

would not be possible with random data access.

5 SOURCE-TO-SOURCE OPENCL CODE GENERATION

When additionally aiming to execute HighPerMeshes kernels on accelerators like GPUs, the embedding of HighPerMeshes into C++ 17 is cur-

rently a limitation, as no suitable compilers exist so far. Thus, in order to support also these architectures by HighPerMeshes, we developed a

source-to-source code transformation infrastructure that complements the library and runtime system introduced in Section 4. The transformation

infrastructure extracts the lambda code given in the kernels described in Section 2.3into OpenCL.

In addition to the OpenCL kernel code that we generate by source-to-source transformations, OpenCL requires boilerplate code on the host

side that either compiles and runs its kernels during runtime, or uses a third-party compiler to compile the kernel code. We chose an approach that

reduces the amount of code that actually needs to be generated on the host and instead employ a library-based solution for managing OpenCL

kernels on the host side. In this section, we introduce the combination of kernel transformation flow and library-based dispatcher that handles the

host side of the OpenCL execution model.

5.1 Intermediate representation and kernel generation

Clang can expose the abstract syntax tree (AST) of C++ programs and allows writing source-to-source translation tools with LibTooling§. To change

the resulting source code, LibTooling can extract the location of specific AST nodes in the source code. This range of characters can either be replaced

or expanded with a new text. This means it is not possible to modify the AST directly. This is not a maintainable solution for context-sensitive trans-

formations that depend on each other. Furthermore, each transformation must produce a valid C++ program; otherwise, the compiler cannot parse

it, which might complicate certain transformations.

Because of this, we translate parts of the AST provided by Clang into a new intermediate representation (IR), where an AST can transform into

another AST directly. The AST’s node types represent a subset ofC++ that allows all the common operations in HighPerMeshes. In order to not have

to implement a complete IR of C++, there are certain restrictions to what is allowed in kernels to be transformed with the code generator. Most

notably, data structures not provided by HighPerMeshes are not allowed.

5.1.1 Transformations

The transformation framework is based on the visitor pattern.18 Each node must provide a transformfunction that applies the visitor’s visit

function to each of its members and creates a new member of its own type. Listing 7 shows the structure for a used variable and its corresponding

transform function. This way, if visit does not return identity for some member, the latter is transformed into a new node.

§ https://clang.llvm.org/docs/LibTooling.html.

https://clang.llvm.org/docs/LibTooling.html
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Listing 7: Example of the transform function

Visitors in the code generator can have multiple behaviors. They either traverse the AST depth-first or breadth-first and can also implement

different stopping conditions. For example, we employ a visitor that only traverses until it encounters a member of a certain type.

Listing 8 shows an example for the initialization of one such visitor. When calling the transformer’s visit function on a node in the AST, it

checks if the given node can be passed to the lambda it received (lines 2–4) and applies it if possible or returns the unmodified node. This way, each

transformation creates a new AST from the old one, keeping the nodes that are unchanged and transforming nodes that match the passed lambda.

For example, suppose the transformer’s visit function is applied to the root node of an AST. In that case, it returns a new AST where the function

do_something_with changes each variable.

Listing 8: Example of the transform function

5.1.2 Printing

To generate a new source file after all transformations are applied, each type used in the IR must also implement a print function that prints their

representation in the actual source code. The function recursively prints the complete subtree that makes up the expression or statement. For

example, Listing 9 shows this print function for the variable type, where only its name is printed. The resulting kernels are printed to a source-file

that can be used on the host-side.

Listing 9: Example of the transform function

5.2 Host side integration

The buffer data types described in Section 2.2 can specify custom allocators similar to the containers provided by the standard template library¶.

With the C++ bindings of OpenCL 2.0#, it is possible to use the shared virtual memory capabilities introduced in OpenCL 2.0 using such an alloca-

tor. This heavily reduces the code that needs to be generated and the complexity involved in transferring data between host and device. The code

generator employs coarse-grained shared virtual memory to allow compatibility with more devices.

¶ https://en.cppreference.com/w/cpp/header.
# https://github.khronos.org/OpenCL-CLHPP/.

https://en.cppreference.com/w/cpp/header
https://github.khronos.org/OpenCL-CLHPP/
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F I G U R E 4 Summary of the code generator’s workflow

We provide a library implementation for initialization and kernel enqueuing that handles all the boilerplate code associated with compiling the

kernels and enqueuing them. A class calledOpenCLHandler allows reading kernels from either a string or binary. It then provides all the necessary

functions to enqueue a kernel. Another class called OpenCLKernelEnqueuer is constructed with such an OpenCLHandler. It allows directly

specifying the arguments of a kernel and execute it. We provide as much code as possible as a library solution because it is less error-prone and more

comfortable to test than generating all the necessary code.

In summary, in order to handle the host side integration of OpenCL kernels, the code generator replaces the original dispatcher calls with the

OpenCLKernelEnqueuermentioned above, adds the initialization of anOpenCLHandler, and applies the correct allocator to all the buffers. For

these host-side transformations, the translation into the code generator’s IR is not necessary because the code that needs to be generated is far

simpler due to the library approach.

5.3 Code generator workflow

Figure 4 summarizes the entire code generator’s workflow with kernel extraction and generation and host side integration.

First, the user provides a HighPerMeshes source-file that can be tested by employing the sequential dispatcher provided by HighPerMeshes.

The source-to-source generator finds all dispatcher.Executecalls and their corresponding kernels (ForEachEntity) based on the IR pro-

vided by Clang. We translate these kernels into a new IR that allows transforming the resulting AST into other AST. In this new IR, we can apply all

transformations necessary to generate a valid OpenCL kernel from the provided lambdas.

Overall, we have implemented 33 transformers so far. Their most important purpose is to translate the different HighPerMeshes-specific lan-

guage features such as vectors and matrices into structures that are usable with OpenCL, translate C++ syntax to C syntax, and to create explicit

address generation code based on buffer base addresses, view-specific offsets, and offsets based on work-items. After all transformations are

applied, the device code is generated by printing all nodes of the final AST.

Furthermore, the infrastructure adapts the given HighPerMeshes source-file to be usable with the new OpenCL kernels by employing LibTool-

ing’s usual capabilities of directly modifying the source code. In this step, information from the kernel generation phase is used, such as generated

kernel names.

6 EXPERIMENTS

6.1 Distributed scalability experiments

In this section, we analyze the distributed scalability of the matrix-vector product (Listing 2), the volume kernel (Listing 4), and the surface kernel

(Listing 5). The experiments were performed on a cluster, where each compute node consists of two sockets. Each socket contains an Intel Xeon Gold

6148 “Skylake” CPU, which has 20 cores and a base frequency of 2.4 GHz. Hyperthreading is deactivated. The nodes are connected on a 100 Gb/s

Intel Omni Path network. All experiments were executed with 20 threads per socket, as the scalability of our threading approach on a single compute

node has already been shown.15 To show that HighPerMeshes is not implemented for a specific parallelization technology, we analyze two back ends
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(A) Acceleration with ACE’s thread pool.

(B) Acceleration with OpenMP.

F I G U R E 5 Strong scaling speedup for iterating over the specified kernels on a mesh with 400,000 tetrahedra and 1000 time steps on an
increasing amount of sockets compared with executing the same kernels on one socket. The evaluated back ends parallelize the programs with
ACE’s thread pool (A) or by accelerating the scheduled tasks with OpenMP (B)

provided by HighPerMeshes. The first one schedules tasks using ACE’s thread pool, while the other accelerates tasks with OpenMP, as described in

Section 4.

We conducted strong scaling experiments for 1000 time steps on a synthetic mesh of 400,000 tetrahedra. Such a setup represents a typi-

cal problem size targeted by the distributed dispatcher. Figure 5 shows the speedup over a single node for the distributed dispatcher for both

back ends and an increasing amount of compute nodes. As a baseline for each experiment, we measured the execution time with both back

ends on a single socket, that is, 20 cores, and use the faster one. Thus, the theoretical optimum for each application is a speedup equal to the

number of sockets. For 640 cores, the back end feeding threads to ACE’s thread pool achieves better speedups for the matrix-vector prod-

uct with a speedup of 21.19. The volume and surface kernels achieve a better speedup in the case for OpenMP acceleration, with a speedup

of 27.94 and 28.98, respectively. Furthermore, the volume and surface kernels scale better than the matrix–vector multiplication because they

are more compute-intensive. They iterate over 20 DoFs instead of just one. To achieve this kind of scalability, the dispatcher requires a suffi-

cient workload. The experiment shows that we reach approximately 90% of the optimal speedup for the surface kernel and above 80% for the

volume kernel.

For the strong scaling experiment, we also calculated the standard deviation from the mean for the workload on each socket to determine the

effectiveness of the load balancing scheme described in Section 4. Here we calculated a maximum standard deviation of 2.27%, showing that the

work is evenly distributed between nodes and that no significant bottlenecks are introduced due to task dependencies.

Furthermore, we conducted weak scaling experiments with around 12,500 tetrahedrons per socket used, with minor deviations to the work-

load per socket depending on the mesh partitioning. Figure 6 shows the weak scaling results for the volume and surface kernel for both back ends.

We show the parallel efficiency relative to the respective two-socket variant as a reference. All results are above 90% except for the surface ker-

nel using ACE’s thread pool on 32 or 64 threads. On 64 sockets or 1280 cores, even this experiment still reaches an efficiency of 81% compared

with the two-socket variant. The same weak scaling experiments were also performed for the matrix-vector product. As this example does not

require communication, the measured parallel efficiency was always close to 100%. Therefore we omit these results in the figure to not clutter

the graph.

Overall, the strong and weak scaling experiments show that HighPerMeshes allows an efficient and easy distribution of matrix-free algorithms

at least to dozens of HPC nodes. They also show that HighPerMeshes provides suitable abstractions for different back ends, as the results for both

back ends provide similar results for most of the experiments. Instead, both reference implementations achieve similar speedups, thus showing that

the language is portable to different technologies.
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F I G U R E 6 Parallel efficiency for the weak scalability experiments. On the basis of a mesh with 400,000 tetrahedrons on 32 sockets, we
increase or decrease the number of mesh elements based on the number of sockets used. We show the parallel efficiency of the volume and
surface kernel for both back ends. Each kernel is executed for 10,000 time steps

TA B L E 2 Speedups of generated GPU kernels over
baseline HighPerMeshes CPU execution

Kernel Speedup GPU over CPU

Forward Euler 4.9

Runge Kutta integration 10.9

Maxwell volume 12

TA B L E 3 Speedups of generated GPU kernels over hand-written CPU execution

Kernel Speedup GPU over CPU

Forward Euler with three-dimensional vectors 2.5

Runge Kutta integration with hand-written host-side code 9.7

6.2 GPU experiments

In this section, we test the performance of HighPerMeshes’ back end using OpenCL as described in Section 5. For this purpose, we calculate the

speedup of three kernels compared with our back end using OpenMP. We test the forward Euler method shown in Listing 6, the Runge Kutta inte-

gration loop explained in Section 3.2, and the Maxwell volume kernel shown in Listing 4. All experiments are run for a single DoF per entity and use

double-precision floating-point types.

Similar to the strong scaling scenario in Section 6.1, we use a mesh of 400,000 tetrahedra and simulate for 1000 time steps. We measured

the experiments described in this section on a system with an AMD Ryzen 5 3600X CPU and an AMD Radeon RX 5600 XT GPU, thus compar-

ing in this setup two mid-range consumer devices that a computational scientist might use before moving to an HPC system. Table 2 presents

the measured GPU speedups for the three kernels, showing how HighPerMeshes can also exploit the acceleration potential of GPUs for suitable

kernels.

In order to critically assess these results further, we investigated if the CPU implementation of our DSL leads to performance deficits

compared with a hand-written implementation. Table 3 shows the results for two additional experiments, comparing the same generated GPU

kernels with hand-optimized CPU variants of the same kernels. First, we implemented the Runge Kutta Integration loop without statements

that are available in HighPerMeshes, instead using standard for-loops and vectors. The loop iterating over all entities in the range is parallelized

with OpenMP, similar to the back end provided in HighPerMeshes. Here we can only see a slight difference in performance, only a speedup

of 9.7 compared with 10.9, which means that HighPerMeshes introduces some overhead, but does not alter the resulting performance by a

significant amount for its high level of abstraction. We also investigated if the influence of vector data structures as provided by HighPerMe-

shes impact on performance. For this purpose, we measured the speedup for the forward Euler kernel with a three-dimensional vector. Here

we only see a speedup of 2.5 compared with 4.9. An explanation is that we now have to consider three vector entries instead of just one,

which leads to uncoalesced memory accesses. Here, performance could be improved by using “structures of arrays” instead of using “arrays of

structures.”
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7 RELATED WORK

There are several other software projects addressing PDE computations on unstructured grids. Traditional library approaches such as deal.II,19

DUNE,20 or Kaskade 721 focus on application building blocks and usually provide explicit parallelization based on threads or MPI, providing one or

a few selected back ends such as PETSc.22 HighPerMeshes provides explicit features that allow implementing new back ends while these toolbox

approaches do not grant such extensibility.

High-level DSLs such as FEniCS23 or FreeFEM24 allow specifying PDE problems in very abstract notation and use code generation techniques

to create efficient simulation programs. The scope of HighPerMeshes is more on the side of solver-implementation than abstract mathematical for-

mulations. The projects closest in scope and intention to our work are OP225/PyOP226 and Liszt.27 OP2 is an “active library” framework that allows

distributing mesh-based compute kernels and accessing data associated with different mesh entities on muticore and many-core architectures.

Here, the major difference to HighPerMeshes is that OP2 provides a direct parallelization statement op_par_loop instead of using a dispatcher.

Liszt is a DSL for PDE solvers embedded in Scala that provides a cross-compiler that analysis FEMs written in their syntax, which is close to Scala. In

contrast, we rely on template metaprogramming methods for distributing code while we use code transformation techniques for the OpenCL back

end.

There are several DSLs that consider stencil codes on structured grids. In comparison, HighPerMeshes targets the domain of solver codes on

unstructured grids. For example, STELLA28 is embedded in C++ and allows parallelization with OpenMP, while Mint29 is embedded in C and uses

source-to-source transformation to emit CUDA code. Another example in this domain is ExaSlang,30 a DSL that was developed in the ExaStencils31,32

project. It is a multilevel DSL that uses code generation to transform algorithms from more abstract algorithm definitions to concrete solver

implementations that are then translated to C++ code.

Regarding code generation, Hipacc33,34 is a DSL in the domain of image processing that also uses Clang’s Libtooling to generate code. Compared

with their approach, HighPerMeshes’s code generator introduces an additional IR to allow AST-to-AST transformations, while HiPacc only employs

term-rewriting.

Alternatives to OpenCL include the CUDA programming model for NVIDIA GPUs and Intel’s recently released oneAPI specification around

the more expressive DPC++ language based on SyCL and C++ to target its CPUs, GPUs, and FPGAs. Yet, OpenCL is currently still the most widely

supported language for data-parallel architectures, also including AMD GPUs besides the previously mentioned targets. Of the mentioned technolo-

gies, HighPerMeshes currently only supports OpenCL, but is designed in such a way, that a new back end can be introduced with a new dispatcher

as explained in Section 2.3.

To summarize, HighPerMeshes is a DSL embedded in C++ focused on solver implementations for unstructured grids that completely sep-

arates parallelization technology from solver formulation. While HighPerMeshes already provides some back ends for different parallelization

technologies, it is designed to easily allow the implementation of other back ends with its dispatcher concept.

8 CONCLUSION AND FUTURE WORK

HighPerMeshes is an embedded DSL providing high-level abstractions for the design of iterative, matrix-free algorithms on unstructured grids. It

is a powerful framework enabling users to run simulations as well as implement their own modifications for complex multiscale problems from a

broad range of application domains like optics, photonics, hydrodynamics, gas dynamics, and acoustics.

HighPerMeshes provides data structures and procedures that allow for efficient autoparallelization and distribution with the help of GASPI,

ACE, OpenMP, and OpenCL. Here, the dispatcher concept allows a clean separation of the parallelization back ends from the rest of the DSL, allow-

ing other technologies, such as SYCL||, in the future. This tackles the problem of not being able to use the DSL if new technologies emerge and

makes HighPerMeshes more future-proof compared with other approaches that only provide a fixed number of back end solutions. HighPerMeshes

already includes some scalable high-performance back ends. This saves implementation time and effort on one side, and offers flexibility for differ-

ent computing platforms without the need for code modification on the other side. In our preliminary practical experience, we found that the DSL

can indeed be used by numerical analysts ignorant of modern parallel architectures to exploit these to a large extent. Thus, HighPerMeshes enables

the user to take advantage of complex parallelization, task scheduling, and data distribution techniques, completely without requiring knowledge

about parallelization. Moreover, relying on the HighPerMeshes abstraction relieves the user from adapting the application code to several different

target architectures.

The back ends for parallelization and distribution, as described in Section 4 leave room for future work. Alternative back ends can be imple-

mented and used without modification of user code due to the clear decoupling of algorithm and parallelization technology provided by the

dispatcher concept. Alternative dispatchers could be based on a hybrid of MPI and OpenMP.35 Another significant next step is to combine the

OpenCL back with the GASPI back end, allowing the usage of GPUs on multiple nodes. Another opportunity lies within generating code for

||https://sycl.tech/.

https://sycl.tech/
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an accelerator and distributing the resulting kernels with the distributed dispatcher. While the code generator is functional, more sophisticated

optimizations are also in consideration for future work.
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